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Flocking for Multi-Agent Dynamic Systems:
Algorithms and Theory

Reza Olfati-Saber, Member, IEEE

Abstract— In this paper, we present a theoretical framework for design
and analysis of distributed flocking algorithms. Two cases of flocking in
free-space and presence of multiple obstacles are considered. We present
three flocking algorithms: two for free-flocking and one for constrained
flocking. A comprehensive analysis of the first two algorithms is provided.
We demonstrate the first algorithm embodies all three rules of Reynolds.
This is a formal approach to extraction of interaction rules that lead to the
emergence of collective behavior. We show that the first algorithm gener-
ically leads to regular fragmentation, whereas the second and third algo-
rithms both lead to flocking. A systematic method is provided for construc-
tion of cost functions (or collective potentials) for flocking. These collective
potentials penalize deviation from a class of lattice-shape objects called α-
lattices. We use a multi-species framework for construction of collective
potentials that consist of flock-members, or α-agents, and virtual agents
associated with α-agents called β- and γ-agents. We show that migra-
tion of flocks can be performed using a peer-to-peer network of agents, i.e.
“flocks need no leaders.” A “universal” definition of flocking for particle
systems with similarities to Lyapunov stability is given. Several simulation
results are provided that demonstrate performing 2-D and 3-D flocking,
split/rejoin maneuver, and squeezing maneuver for hundreds of agents us-
ing the proposed algorithms.

Keywords— swarms, self-organizing systems, mobile sensor networks,
distributed control, networked autonomous vehicles, self-assembly of net-
works, consensus theory, dynamic graphs

I. INTRODUCTION

FLOCKING is a form of collective behavior of large num-
ber of interacting agents with a common group objective.

For many decades, scientists from rather diverse disciplines in-
cluding animal behavior, physics, biophysics, social sciences,
and computer science have been fascinated by the emergence of
flocking, swarming, and schooling in groups of agents with lo-
cal interactions [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12]. Examples of these agents include birds, fish, penguins,
ants, bees, and crowds. In an abstract fashion, we refer to the
members of flocks as α-agents.

The engineering applications of flocking include massive dis-
tributed sensing using mobile sensor networks in an environ-
ment; self-assembly of connected mobile networks; automated
parallel delivery of payloads; and performing military missions
such as reconnaissance, surveillance, and combat using cooper-
ative Unmanned Aerial Vehicles (UAVs). In nature, flocks are
examples of self-organized networks of mobile agents capable
of coordinated group behavior. The self-organizing feature of
flocks/schools [12] can provide a deeper insight in design of
sensor networks [13], [14], [15], [16].
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In 1986, Reynolds introduced three heuristic rules that led to
creation of the first computer animation of flocking [5]. Here
are the three flocking rules of Reynolds:
1) Flock Centering: attempt to stay close to nearby flockmates,
2) Collision Avoidance: avoid collisions with nearby flock-
mates,
3) Velocity Matching: attempt to match velocity with nearby
flockmates.
Let us mention that these rules are also known as cohesion, sep-
aration, and alignment rules in the literature. These rules are
subject to broad interpretation that complicates objective analy-
sis and implementation of Reynolds rules.

Among the first groups of physicists who studied flocking
from a theoretical perspective were Vicsek et al. [6], Toner &
Tu [7], Shimoyama et al. [8], and Levine et al. [17]. The work
of Vicsek et al. was mainly focused on emergence of align-
ment (which does not amount to flocking) in self-driven parti-
cle systems, whereas Toner & Tu used a continuum mechanics
approach. Levine et al. created rotating swarms known as cir-
cular ant mills using a particle-based model with all-to-all in-
teractions. Other continuum models of swarms were proposed
by Mogilner & Eldstein-Keshet [18], [9] and Topaz & Bertozzi
[19]. Helbing et al. [10] studied the escape panic phenomenon
using an empirical particle-based model of flocks.

Recently, there has been a surge of interest among control
scientists in consensus problems due to the work of Olfati-Saber
& Murray [20], [21] and alignment on networks with variable
topology by Jadbabaie et al. [22], Moreau [23], and Ren &
Beard [24]. In alignment, there is no constraint on the consen-
sus value, whereas in most consensus problems for networked
dynamic systems, the objective is distributed computation of a
function via agreement [20], [25].

Stability analysis of small groups of particles or agents with
all-to-all interconnections were considered in [26], [27], [28].
Tanner et al. in [29] proposed a centralized algorithm for a par-
ticle system that leads to irregular collapse for generic initial
states. They also suggest a distributed algorithm that leads to
irregular fragmentation. Fragmentation and collapse are two
well-known pitfalls of flocking that are discussed later.

Some past research with strong connections to this paper in-
clude the work of Fax & Murray [30] on formation control
and graph Laplacians; Mesbahi [31], [32] on state-dependent
graphs; Cortés & Bullo [15] and Cortés et al. [33] on placement
of mobile sensors; Rabichini & Frazzoli [34] on energy-efficient
splitting algorithms; Leonard & Fiorelli [35] and Olfati-Saber &
Murray [36] on graph-induced potential functions for structural
formation control; Ögren et al. [37] on coordination of mobile
sensor networks; Khatib [38] and Rimon & Koditschek [39] on
using artificial potentials for obstacle avoidance; Strogatz [40]
on complex biological and social networks; and Olfati-Saber
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[41] on ultrafast small-world networks.
A number of recent papers on motion control for swarms suf-

fer from common drawbacks including the use of unbounded
forces for collision avoidance, lack of scalability, and irregular
fragmentation and collapse. In contrast, the work in [42], [43],
[44] do not possess such features. In [43] some analytical results
such as asymptotic alignment and energy dissipation are estab-
lished. The analysis presented in [43] and some other existing
works on flocking are far from complete. In particular, the exis-
tence of a spatial order in flocks has never been established. In
this paper, we attempt to bridge some of these theoretical gaps
by answering the following fundamental questions:
1) How do we design scalable flocking algorithms and guaran-
tee their convergence?
2) What are the stability analysis problems related to flocking?
3) What types of order exist in flocks?
4) How do flocks perform split/rejoin maneuvers or pass
through narrow spaces?
5) How do flocks migrate?
6) What constitutes flocking?
We hope that our analysis sheds light on cooperation and emer-
gence of collective behavior in complex organizations.

Let us refer to a particle/agent in a group with the objec-
tive of performing flocking as an α-agent. We introduce three
scalable flocking algorithms for α-agents. Our first algorithm
is a gradient-based algorithm equipped with a velocity consen-
sus protocol. We demonstrate that the first algorithm embodies
all three rules of Reynolds. It is also demonstrated that this al-
gorithm leads to regular fragmentation rather than flocking for
generic initial states. The analysis of the first algorithm is very
useful for clarifying the features of the regular fragmentation
phenomenon. The second algorithm (or Algorithm 2) is the
main flocking algorithm for moving in a free m-space. This
algorithm has an additional term represented by a γ-agent that
takes the group objective into account. In the process of an-
alyzing Algorithm 2, we pose two conjectures that are crucial
in explaining the spatial order of flocks and self-assembly of a
connected network of mobile agents.

The third algorithm has obstacle avoidance capabilities. We
represent the effects of obstacles via virtual agents called β-
agents. These agents are kinematic and move on the bound-
ary of the obstacles. A multi-species collective potential is then
formed that is used for both design and analysis of the third
flocking algorithm. We demonstrate that the tracking problem
for flocks can be solved using a peer-to-peer architecture with-
out leaders—thus, confirming a widely accepted opinion by an-
imal behavior scientists that “schools need no leaders” [1]. We
provide several simulation results for 40 to 150 agents that suc-
cessfully perform 2-D flocking, 3-D flocking, 2-D regular frag-
mentation, split/rejoin maneuver, and squeezing maneuver in a
distributed manner.

The main contribution of this paper is to provide a theoretical
and computational framework for design and analysis of scal-
able flocking algorithms in Rm in presence or lack of obstacles.

An outline of the paper is as follows: Some background
on graphs, proximity nets, α-lattices, algebraic graph theory,
consensus problems, collective potentials are presented in Sec-
tion II. Two distributed flocking algorithms for moving in free-

space are provided in Section III. Collective dynamics of flocks
and a decomposition lemma are stated in Section IV. Our main
results on analysis of the first two algorithms are presented in
Section V. The relation between Algorithm 1 and Reynolds
rules are established in Section VI. The third algorithm with
obstacle avoidance capabilities is presented in Section VII. Ex-
tensive simulation results are provided in Section VIII. In Sec-
tion IX, we elaborate on what constitutes flocking and give a
universal definition of flocking. Finally, concluding remarks are
made in Section X.

II. PRELIMINARIES

The theoretical framework presented in this paper relies on
some basic concepts in graph theory [45], [46], [47], algebraic
graph theory [48], spatially induced graphs (or proximity nets)
[43], and consensus problems [20], [21] that are discussed in the
following.

A. Topology of Flocks: Proximity Nets

A graph G is a pair (V, E) that consists of a set of vertices
V = {1, 2 . . . , n} and edges E ⊆ {(i, j) : i, j ∈ V, j 6= i}
(i.e. the graph is in general directed and has no self-loops). The
graph G is said to be undirected if (i, j) ∈ E ⇐⇒ (j, i) ∈ E .
The quantities |V| and |E| are, respectively, called order and
size of the graph. For networked dynamic systems, |E| is called
communication complexity of the system [49].

The adjacency matrix A = [aij ] of a graph is a matrix with
nonzero elements satisfying the property aij 6= 0 ⇐⇒ (i, j) ∈
E . The graph is called weighted whenever the elements of its
adjacency matrix are other than just 0-1 elements. Here, we
mostly use weighted graphs with position-dependent adjacency
elements. For an undirected graph G, the adjacency matrix A
is symmetric (or AT = A). The set of neighbors of node i is
defined by

Ni = {j ∈ V : aij 6= 0} = {j ∈ V : (i, j) ∈ E}. (1)

Let qi ∈ Rm denote the position of node i for all i ∈ V . The
vector q = col(q1, . . . , qn) ∈ Q = Rmn is called the configu-
ration of all nodes of the graph. A framework (or structure) is
a pair (G, q) that consists of a graph and the configuration of its
nodes.

Consider a group of dynamic agents (or particles) with equa-
tion of motion {

q̇i = pi,
ṗi = ui,

(2)

where qi, pi, ui ∈ Rm (e.g. m = 2, 3) and i ∈ V . The benefit
of using particle-based models of flocks compared to continuum
models is that one cannot take inter-agent sensing, communica-
tion, and computational issues for granted.

Let r > 0 denote the interaction range between two agents.
An open ball with radius r (see Fig. 1) determines the set of
spatial neighbors of agent i that is denoted by

Ni = {j ∈ V : ‖qj − qi‖ < r} (3)

where ‖ · ‖ is the Euclidean norm in Rm. Given an interaction
range r > 0, a proximity net G(q) = (V, E(q)) can be defined
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Fig. 1. An agent and its neighbors in a spherical neighborhood.

by V and the set of edges

E(q) = {(i, j) ∈ V × V : ‖qj − qi‖ < r, i 6= j} (4)

that clearly depends on q. The framework (G(q), q) is called a
proximity structure.

The topology of a wireless sensor network with a radio range
r is a proximity net [14]. If the interaction range of all agents is
the same, the proximity net G(q) becomes an undirected graph.
The proximity net of n points is generically a digraph under
either of the following assumptions: i) the spherical neighbor-
hoods of agents do not have the same radius, or ii) every agent
uses a conic neighborhood to determine its neighbors as in [5].
In this paper, all proximity nets are bidirectional graphs.

B. Geometry of Flocks: α-Lattices

To capture an apparent spatial-order in real-life flocks, we use
a lattice-type structure to model the geometry of desired confor-
mation of agents in a flock. For doing so, we seek the set of con-
figurations q of n points in which each point is equally distanced
from all of its neighbors on a proximity net G(q). In terms of
inter-agent distances, this geometric object can be described as
solutions of the following set of algebraic constraints:

‖qj − qi‖ = d, ∀j ∈ Ni(q) (5)

The solutions q of the set of constraints in (5) play the role of de-
sired conformations of agents in a flock (i.e. a geometric model
of flocks). Since, this geometric object frequently appears in this
paper, we find it convenient to define it as a lattice-type object.

Definition 1. (α-lattice) An α-lattice is a configuration q satis-
fying the set of constraints in (5). We refer to d and κ = r/d as
the scale and ratio of the lattice, respectively.

The proximity net induced by an α-lattice is not required to
be connected. Furthermore, all edges of the proximity structure
induced by an α-lattice have the same length. Fig. 2 illustrates
other examples of α-lattices.

Remark 1. As seen in Fig. 2, it turns out that the proximity
structure of 2-D α-lattices are collections of crystals (or quasi-
crystals) that are made out of repeated use of a single ( or mul-
tiple) type(s) of polygonal cells. This follows from planarity
property of such proximity structures (see Theorem 4).

(a) (b)
Fig. 2. Examples of α-lattices and quasi α-lattices: (a) a 2-D α-lattice with a
disconnected proximity net and (b) a 2-D quasi α-lattice with n = 150 nodes.

To describe conformations q′ that are very close to an α-
lattice satisfying (5), we use the following set of inequalities

−δ ≤ ‖qj − qi‖ − d ≤ δ, ∀(i, j) ∈ E(q) (6)

and refer to its solutions as a quasi α-lattice. Fig. 2 (c) illustrates
a quasi α-lattice that is computed numerically using the second
flocking algorithm (or protocol (24)).

To measure the degree in which a configuration q differs from
an α-lattice, we use the following deviation energy

E(q) =
1

(|E(q)|+ 1)

n∑
i=1

∑
j∈Ni

ψ(‖qj − qi‖ − d) (7)

where ψ(z) = z2 is called a pairwise potential (note that other
scalar potentials can be used as well). The deviation energy can
be viewed as a nonsmooth potential function for a system of n
particles. Interestingly, α-lattices are global minima of this po-
tential function and achieve the minimum value of zero. For a
quasi α-lattice q with an edge-length uncertainty of δ, the devi-
ation energy is given by

E(q) ≤ |E(q)|
|E(q)|+ 1

δ2 ≤ δ2 = ε2d2, ε� 1

which means quasi α-lattices are low-energy conformations of
n points. The order of magnitude of the deviation energy of the
quasi α-lattice in Fig. 2 (b) is 10−3 (for d = 7 and κ = 1.2).

C. σ-Norms and Smooth Adjacency Elements

To construct a smooth collective potential of a flock and spa-
tial adjacency matrix of a proximity net, we need to define a
non-negative map called a σ-norm.

The σ-norm of a vector is a map Rm → R≥0 (not a norm)
defined as

‖z‖σ =
1
ε
[
√

1 + ε‖z‖2 − 1] (8)

with a parameter ε > 0 and a gradient σε(z) = ∇‖z‖σ given by

σε(z) =
z√

1 + ε‖z‖2
=

z

1 + ε‖z‖σ
(9)

The parameter ε of the σ-norm remains fixed throughout the pa-
per. One might wonder why do we even need to define a new
norm. The map ‖z‖σ is differentiable everywhere, but ‖z‖ is
not differentiable at z = 0. Later, this property of σ-norms is
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used for construction of smooth collective potential functions
for groups of particles.

A bump function is a scalar function ρh(z) that smoothly
varies between 0 and 1. Here, we use bump functions for con-
struction of smooth potential functions with finite cut-offs and
smooth adjacency matrices. One possible choice is the follow-
ing bump function introduced in [44]

ρh(z) =


1, z ∈ [0, h)
1
2 [1 + cos(π (z−h)

(1−h) )], z ∈ [h, 1]
0 otherwise.

(10)

where h ∈ (0, 1). One can show that ρh(z) is aC1-smooth func-
tion with the property that ρ′h(z) = 0 over the interval [1,∞)
and |ρ′h(z)| is uniformly bounded in z. Using this bump func-
tion, we can define a spatial adjacency matrix A(q) via its ele-
ments by

aij(q) = ρh(‖qj − qi‖σ/rα) ∈ [0, 1], j 6= i (11)

where rα = ‖r‖σ and aii(q) = 0 for all i and q. For h = 1,
ρh(z) is an indicator function that is equal to 1 over the interval
[0, 1) and 0, otherwise. The use of an indicator bump function
leads to a proximity net with 0-1 position-dependent adjacency
elements.

D. Collective Potential Functions

The collective potential function V (q) of a group of agents is
a non-negative function V : Rmn → R≥0 with the property that
any solution of the set of algebraic constraints in (5) is “closely
related to” a local minima of V (q) and vice versa. In this paper,
a collective potential is a smooth version of a deviation energy
function with a scalar pairwise potential that has a finite cut-off.
This feature turns out to be the fundamental source of scalability
of our flocking algorithms.
Remark 2. Generalized Lennard-Jones functions and exponen-
tially vanishing maps do not have finite cut-offs and are inad-
equate for our purpose without any modifications. A common
approach to create a pairwise potential with a finite cut-off is
“soft cutting” in which a pairwise potential is multiplied by a
bump function.

Let ψ(z) : R≥0 → R≥0 be an attractive/repulsive pairwise
potential with a global minimum at z = d and a finite cut-off at
r. Then, the following function

ϕ(q) =
1
2

∑
i

∑
j 6=i

ψ(‖qj − qi‖) (12)

is a collective potential that is not differentiable at singular con-
figurations in which two distinct nodes coincide, or qi = qj . To
resolve this problem, we use the set of algebraic constraints in
(5) that are rewritten in terms of σ-norms as

‖qj − qi‖σ = dα, ∀j ∈ Ni(q) (13)

where dα = ‖d‖σ . These constraints induce a smooth collective
potential function in the form:

V (q) =
1
2

∑
i

∑
j 6=i

ψα(‖qj − qi‖σ) (14)
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Fig. 3. Smooth pairwise potential ψα(z) with a finite cut-off.

where ψα(z) is a smooth pairwise attractive/repulsive potential
(defined in equation (16)) with a finite cut-off at rα = ‖r‖σ and
a global minimum at z = dα.

To construct a smooth pairwise potential with finite cut-off,
we integrate an action function φα(z) that vanishes for all z ≥
rα. Define this action function as

φα(z) = ρh(z/rα)φ(z − dα)
φ(z) = 1

2 [(a+ b)σ1(z + c) + (a− b)] (15)

where σ1(z) = z/
√

1 + z2 and φ(z) is an uneven sigmoidal
function with parameters that satisfy 0 < a ≤ b, c =
|a − b|/

√
4ab to guarantee φ(0) = 0. The pairwise attrac-

tive/repulsive potential ψα(z) in (14) is defined as

ψα(z) =
∫ z

dα

φα(s)ds. (16)

This function is depicted in Fig. 3.

E. Consensus on Proximity Nets and Graph Laplacians

Graph Laplacians of proximity nets appear in analysis of ve-
locity matching of agents in flocks. Consider a graph G of order
n with adjacency matrix A = [aij ]. The degree matrix of G is
a diagonal matrix ∆ = ∆(A) with diagonal elements

∑n
j=1 aij

that are row-sums of A. The scalar graph Laplacian L = [lij ] is
an n× n matrix associated with graph G that is defined as

L = ∆(A)−A. (17)

Laplacian matrix L always has a right eigenvector of 1n =
(1, . . . , 1)T associated with eigenvalue λ1 = 0. The following
lemma summarizes the basic properties of graph Laplacians:

Lemma 1. Let G = (V, E) be an undirected graph of order
n with a non-negative adjacency matrix A = AT . Then, the
following statements hold:
i) L is a positive semidefinite matrix that satisfies the following
sum-of-squares (SOS) property:

zTLz =
1
2

∑
(i,j)∈E

aij(zj − zi)2, z ∈ Rn; (18)
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ii) The graphG has c ≥ 1 connected components iff rank(L) =
n− c. Particularly, G is connected iff rank(L) = n− 1;
iii) Let G be a connected graph, then

λ2(L) = min
z⊥1n

zTLz

‖z‖2
> 0 (19)

Proof: All three results are well-known in the field of
algebraic graph theory and their proofs can be found in Godsil
and Royle [48].

The quantity λ2(L) is known as algebraic connectivity of a
graph [50]. In [21], it was shown that the speed of convergence
of a linear consensus protocol is equal to λ2 > 0. This con-
sensus protocol will appear as a velocity matching term in all
flocking algorithms that will be presented in this paper. Particu-
larly, we use m-dimensional graph Laplacians defined by

L̂ = L⊗ Im, (20)

where ⊗ denotes the Kronecker product. This multi-
dimensional Laplacian satisfies the following SOS property:

zT L̂z =
1
2

∑
(i,j)∈E

aij‖zj − zi‖2, z ∈ Rmn (21)

where z = col(z1, z2, . . . , zn) and zi ∈ Rm for all i. This
property holds for a proximity net G(q) as well.

III. FLOCKING ALGORITHMS

In this section, we present a set of distributed algorithms for
flocking in free-space, or free-flocking. We refer to a physical
agent with dynamics q̈i = ui as an α-agent. In nature, α-agents
correspond to birds, bees, fish, and ants. Later, we introduce
virtual agents called β-agents and γ-agents which model the ef-
fect of “obstacles” and “collective objective” of a group, respec-
tively. The primary objective of an α-agent in a flock is to form
an α-lattice with its neighboring α-agents.

In free-flocking, each α-agent applies a control input that con-
sists of three terms:

ui = fg
i + fd

i + fγ
i (22)

where fg
i = −∇qi

V (q) is a gradient-based term, fd
i is a ve-

locity consensus term that acts as a damping force, and fγ
i is a

navigational feedback due to a group objective. An example of
a group objective is migration towards a destination. We pro-
pose two distributed algorithms that can be used for creation of
flocking motion in Rm (m = 1, 2, 3 are of great interest):
Algorithm 1: ui = uα

i with

uα
i =

∑
j∈Ni

φα(‖qj − qi‖σ)nij︸ ︷︷ ︸
gradient-based term

+
∑
j∈Ni

aij(q)(pj − pi)︸ ︷︷ ︸
consensus term

(23)

where nij = σε(qj − qi) = qj−qi√
1+ε‖qj−qi‖2

is a vector along the

line connecting qi to qj and ε ∈ (0, 1) is a fixed parameter of the
σ-norm. Algorithm 1 has no group objective and is known as the
(α, α) protocol of flocking [43] because it states the interaction

i

k

j

2

1

3

Fig. 4. Fragmentation phenomenon.

rule between two α-agents. Later, we show that this algorithm
embodies all three flocking rules of Reynolds.

Algorithm 2: ui = uα
i + uγ

i , or

ui =
∑
j∈Ni

φα(‖qj − qi‖σ)nij +
∑
j∈Ni

aij(q)(pj − pi)

+ fγ
i (qi, pi, qr, pr) (24)

where uγ
i is the navigational feedback and is given by

uγ
i := fγ

i (qi, pi, qr, pr) = −c1(qi−qr)−c2(pi−pr), c1, c2 > 0.

The pair (qr, pr) ∈ Rm×Rm is the state of a γ-agent. A γ-agent
is dynamic/static agent that represents a group objective and can
be viewed as a moving rendezvous point. Let (qd, pd) be a fixed
pair of m-vectors that denote the initial position and velocity of
a γ-agent. A dynamic γ-agent has the following model{

q̇r = pr,
ṗr = fr(qr, pr),

(25)

with (qr(0), pr(0)) = (qd, pd). A static γ-agent has a fixed state
that is equal to (qd, pd) for all time. The design of fr(qr, pr) for
a dynamic γ-agent is part of tracking control design for a group
of agents. For example, the choice of fr ≡ 0 leads to a γ-agent
that moves along a straight line with a desired velocity pd. Based
on expression of uγ

i , a secondary objective of an α-agent is to
track a γ-agent.

We shall see that despite the similarities between certain
terms in these protocols, the collective behavior of a group of
agents that use Algorithm 1 is drastically different than a group
of agents applying Algorithm 2.

It turns out that protocol (23) leads to flocking behavior only
for a very restricted set of initial states. For generic set of initial
states and large number of agents (e.g. n > 10), protocol (23)
most likely fails to produce flocking behavior and instead leads
to regular fragmentation as illustrated in Fig. 4. Fragmentation
is a pitfall of flocking. In contrast, protocol (24) never leads to
fragmentation. The importance of Algorithm 1 is due to its fun-
damental role in forming lattice-shape structures during flocking
as a key element of Algorithm 2.
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IV. COLLECTIVE DYNAMICS

The collective dynamics of a group of α-agents applying pro-
tocol (24) is in the form:{

q̇ = p

ṗ = −∇V (q)− L̂(q)p+ fγ(q, p, qr, pr)
(26)

where V (q) is a smooth collective potential function given in
(14) and L̂(q) is the m-dimensional Laplacian of the proxim-
ity net G(q) with a state-dependent adjacency matrix A(q) =
[aij(q)]. Note that for Algorithm 1, fγ ≡ 0.

The first expected result is that with fγ ≡ 0, system (26) is a
dissipative particle system with Hamiltonian

H(q, p) = V (q) +
n∑

i=1

‖pi‖2. (27)

This is due to Ḣ = −pT L̂(q)p ≤ 0 and the fact that the multi-
dimensional graph Laplacian L̂(q) is a positive semidefinite ma-
trix for all q.

The key in stability analysis of collective dynamics is employ-
ing a correct coordinate system that allows the use of LaSalle’s
invariance principle. The naive approach is to use H(q, p) in
the (q, p)-coordinates. The reason such an approach does not
work (for most cases of interest) is that one cannot establish
the boundedness of solutions. During fragmentation, the solu-
tion cannot remain bounded. Therefore, we propose the use of
a moving frame to analyze the stability of flocking motion as
suggested in [43].

Consider a moving fame that is centered at qc—the center of
mass (CM) of all particles. Let Ave(z) = 1

n

∑n
i=1 zi denote

the average of the zi’s with z = col(z1, . . . , zn). Let qc =
Ave(q) and pc = Ave(p) denote the position and velocity of the
origin of the moving frame. Then q̇c(t) = pc(t) and ṗc(t) =
Ave(u(t)). The position and velocity of agent i in the moving
frame is given by {

xi = qi − qc,
vi = pi − pc.

(28)

The relative positions and velocities remain the same in the mov-
ing frame, i.e. xj − xi = qj − qi and vj − vi = pj − pi. Thus,
V (q) = V (x) and ∇V (q) = ∇V (x). The (α, α) protocol in
the moving frame can be expressed as

uα
i =

∑
j∈Ni

φα(‖xj − xi‖σ)nij +
∑
j∈Ni

aij(x)(vj − vi)

with aij(x) = ρh(‖xj − xi‖σ/rα). Our first result is a decom-
position lemma that is the basis for posing a structural stability
problem for the motion of flocks.

Lemma 2. (decomposition) Suppose that the navigational feed-
back fγ(q, p) is linear, i.e. there exists a decomposition of
fγ(q, p) in the following form

fγ(q, p, qr, pr) = g(x, v) + 1n ⊗ h(qc, pc, qr, pr). (29)

Then, the collective dynamics of a group of agents applying pro-
tocol (24) (or (23)) can be decomposed as n second-order sys-
tems in the moving frame

structural dyn.:
{
ẋ = v

v̇ = −∇V (x)− L̂(x)v + g(x, v)
(30)

and one second-order system in the reference frame

translational dyn.:
{

q̇c = pc

ṗc = h(qc, pc, qr, pr)
(31)

where

g(x, v) = −c1x− c2v
h(qc, pc, qr, pr) = −c1(qc − qr)− c2(pc − pr)

(32)

and (qr, pr) is the state of the γ-agent.

Proof: See Appendix A in [51].
A discussion of the effects of using a nonlinear navigational

feedback is presented in Appendix B of [51]. In this case, it turns
out that the structural and translational dynamics are coupled.

V. STABILITY ANALYSIS OF FLOCKING

According to the decomposition lemma, we are now at the
position to define stable flocking motion as the combination of
the following forms of stability properties: 1) stability of certain
equilibria of the structural dynamics and 2) stability of a de-
sired equilibrium of the translational dynamics. The challenge
in analysis of flocking behavior is to establish part 1.

The significant differences in group behaviors created by Al-
gorithms 1 and 2 are due to the considerable differences in the
structural dynamics induced by the two algorithms. Given Al-
gorithm 1, one obtains the following structural dynamics:

Σ1 :
{
ẋ = v

v̇ = −∇V (x)− L̂(x)v
(33)

with a positive semidefinite Laplacian matrix L̂(x). In compar-
ison, the structural dynamics of a group of agents applying Al-
gorithm 2 is in the form

Σ2 :
{
ẋ = v
v̇ = −∇Uλ(x)−D(x)v (34)

where Uλ(x) is called the aggregate potential function and is
defined by

Uλ(x) = V (x) + λJ(x). (35)

The map J(x) = 1
2

∑n
i=1 ‖xi‖2 is the moment of inertia of all

particles and λ = c1 > 0 is a parameter of the navigational
feedback. Moreover, the damping matrix D(x) = c2Im + L̂(x)
is a positive definite matrix with c2 > 0.

Before presenting the stability analysis of flocking behav-
ior under Algorithms 1 and 2, we need to define the structural
Hamiltonians of systems Σ1 and Σ2 as follows:

H(x, v) = V (x) +K(v),
Hλ(x, v) = Uλ(x) +K(v), (36)
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where K(v) = 1
2

∑
i ‖vi‖2 is the velocity mismatch function,

or the kinetic energy of the particle system in the moving frame.
We also need to define what we mean by “cohesion of a group”
and “flocks”.

Definition 2. (a cohesive group) Let (q(·), p(·)) : t 7→ Rmn ×
Rmn be the state trajectory of a group of dynamic agents over
the time interval [t0, tf ]. We say the group is cohesive for all
t ∈ [t0, tf ] if there exists a ball of radius R > 0 centered at
qc(t) = Ave(q(t)) that contains all the agents for all time t ∈
[t0, tf ], i.e. ∃R > 0 : ‖x(t)‖ ≤ R,∀t ∈ [t0, tf ].

Definition 3. (flocks) A group of α-agents is called a flock over
the interval [t0, tf ) if the proximity net G(q(t)) is connected
over [t0, tf ) (tf ≥ t0).

The group is called a quasi-flock if the largest component of
the proximity net is highly populated. The following lemma
provides a geometric characterization of the set of local minima
of the collective potential and plays a critical role in establishing
the spatial-order of self-organizing flocks.

Lemma 3. (spatial-order) Every local minima of V (q) is an
α-lattice and vice versa.

Proof: Define an ε-neighborhood of q as

Nε(q) = {q′ ∈ Rmn : ‖q′i − qi‖ ≤ ε,∀i ∈ V}, (37)

where q′ = col(q′1, q
′
2, . . . , q

′
n). A configuration q∗ is called a

local minima of V (q) if there exists an ε-neighborhood Nε(q)
of q∗ such that V (q) ≥ V (q∗) for all q ∈ Nε(q∗). Keep in mind
that V (q) remains invariant under rotation and translation of all
qi’s, therefore it does not have any isolated local minima.

The collective potential function V (q) can be decomposed
into two terms: a graph-induced potential function by the prox-
imity net G(q) and an additional term that is an integer factor of
h0 = ψα(rα), i.e.

V (q) = VG(q) + k(q)h0 (38)

where

VG(q) = 1
2

∑
(i,j)∈E(q) ψα(‖qj − qi‖σ),

k(q) = 1
2 (n(n− 1)− |E(q)|) ∈ I (39)

with I = {0, 1, . . . , n(n−1)}. Notice that k(q) is an integer that
is directly determined by the number of edges of the proximity
net G(q) ((i, j) and (j, i) with i 6= j count as two edges). The
higher the size of the proximity net G(q), the lower the value
of k(q). Let Qk denote the set of configurations that induce
proximity nets with |E(q)| = n(n − 1) − 2k edges for a fixed
specification (d, r). Observe that ∪n(n−1)

k=0 Qk = Rmn. For a
fixed k ∈ I, we have

V (q) = VG(q) + kh0 ≥ kh0 (40)

for all q ∈ Qk. Any configuration q∗ that achieves the equality
in (40) is a local minima of V (q) and satisfies VG(q∗) = 0. On
the other hand, ψα(z) takes the value zero only at z = dα, hence
the configuration q∗ satisfies

‖q∗j − q∗i ‖σ = dα =⇒ ‖q∗j − q∗i ‖ = d

for all j ∈ Ni(q). This means that q∗ is an α-lattice. The proof
of the converse is rather similar and is omitted.

Theorem 1. Consider a group of α-agents applying protocol
(23) (Algorithm 1) with structural dynamics Σ1 (defined in (33)).
Let Ωc = {(x, v) : H(x, v) ≤ c} be a level-set of the Hamil-
tonian H(x, v) of Σ1 such that for any solution starting in Ωc,
the agents form a cohesive flock ∀t ≥ 0. Then, the following
statements hold:
i) Almost every solution of the structural dynamics converges
to an equilibrium (x∗, 0) with a configuration x∗ that is an α-
lattice.
ii) All agents asymptotically move with the same velocity.
iii) Given c < c∗ = ψα(0), no inter-agent collisions occur for
all t ≥ 0.

Proof: Any solution (q(t), p(t)) of the collective dynam-
ics of α-agents applying protocol (23) is uniquely mapped to a
solution (x(t), v(t)) of the structural dynamics Σ1. We have

Ḣ(x, v) = −vT L̂(x)v = −1
2

∑
(i,j)∈E(x)

aij(x)‖vj − vi‖2 ≤ 0

(41)
which means the structural energyH(x, v) is monotonically de-
creasing for all t ≥ 0. In addition, H(x(t), v(t)) ≤ c for all
t ≥ 0 that implies Ωc is an invariant set. This guarantees that
the velocity mismatch is upper bounded by c because of

K(v(t)) ≤ H(x(t), v(t)) ≤ c, ∀t ≥ 0.

By assumption, for any solution starting in Ωc, the group is co-
hesive in all time t ≥ 0. Hence, there exists an R > 0 such
that ‖x(t)‖ ≤ R,∀t ≥ 0. The combination of boundedness of
velocity mismatch and group cohesion guarantees boundedness
of solutions of Σ1 starting in Ωc. This fact is the result of the
following inequality:

‖(x(t), v(t))‖2 := ‖x(t)‖2 + ‖v(t)‖2 ≤ R2 + 2c =: C (42)

where C > 0 is a constant.
From LaSalle’s invariance principle, all the solutions of Σ1

starting in Ωc converge to the largest invariant set in E =
{(x, v) ∈ Ωc : Ḣ = 0}. However, since the group of α-agents
constitutes a dynamic flock for all t ≥ 0, G(q(t)) is a connected
graph for all t ≥ 0. Thus, based on equation (41), we conclude
that the velocities of all agents match in the moving frame, or
v1 = . . . = vn. But

∑
i vi = 0, therefore, vi = 0 for all i (or

v = 0). This means that the velocity of all agents asymptoti-
cally match in the reference frame, or p1 = p2 = . . . = pn,
which proves part ii). Moreover, the configuration x asymptoti-
cally converges to a fixed configuration x∗ that is an exterma of
V (x), i.e. ∇V (x∗) = 0.

Since any solution of the system starting at certain equilibria
such as local maxima or saddle points remain in those equilibria
for all time, not all solutions of the system converge to a local
minima. However, anything but a local minima is an unstable
equilibria (a blanket assumption). Thus, almost every solution
of the system converges to an equilibrium (x∗, 0) where x∗ is
a local minima of V (x). According to Lemma 3, every local
minima of V (x) is an α-lattice. Therefore, x∗ is an α-lattice and
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asymptotically all inter-agent distances between neighboring α-
agents become equal to d. This finishes the proof of parts i) and
ii).

We prove part iii) by contradiction. Assume there exists a
time t = t1 > 0 so that two distinct agents k, l collide, or
qk(t1) = ql(t1). For all t ≥ 0, we have

V (q(t)) =
1
2

∑
i

∑
j 6=i

ψα(‖qj − qi‖σ)

= ψα(‖qk(t)− ql(t)‖σ)

+
1
2

∑
i∈V\{k,l}

∑
j∈V\{i,k,l}

ψα(‖qj − qi‖σ)

≥ ψα(‖qk(t)− ql(t)‖σ).

Hence, V (q(t1)) ≥ ψα(0) =: c∗. But the velocity mismatch
is a non-negative quantity and Ωc is an invariant level-set of H .
Thus

V (q(t)) ≤ H(x(t), v(t))−K(v(t)) ≤ H(x(t), v(t)) ≤ c < c∗

for all t ≥ 0. This is in contradiction with an earlier inequality
V (q(t1)) ≥ c∗. Therefore, no two agents collide at any time
t ≥ 0.

The assumptions in Theorem 1 rarely hold for a generic set
of initial states and thus fragmentation emerges instead of flock-
ing. In contrast, the assumptions of the following theorem hold
for generic set of initial states without any necessity to presume
group cohesion or connectivity of the proximity net of the agents
over and infinite time interval.

Theorem 2. Consider a group of α-agents applying protocol
(24) (Algorithm 2) with c1, c2 > 0 and structural dynamics
Σ2 (defined in (34)). Assume that the initial velocity mismatch
K(v(0)) and inertia J(x(0)) are finite. Then, the following
statements hold:
i) The group of agents remain cohesive for all t ≥ 0.
ii) Almost every solution of Σ2 asymptotically converges to an
equilibrium point (x∗λ, 0) where x∗λ is a local minima of Uλ(x).
iii) All agents asymptotically move with the same velocity.
iv) Assume the initial structural energy of the particle system is
less than (k + 1)c∗ with c∗ = ψα(0) and k ∈ Z+. Then, at
most k distinct pairs of α-agents could possibly collide (k = 0
guarantees a collision-free motion).

Proof: First, note that the particle system with structural
dynamics Σ2 and Hamiltonian Hλ(x, v) = Uλ(x) + K(v) is a
strictly dissipative particle system in the moving frame because
it satisfies

Ḣλ(x, v) = −vT (c2Im+L̂(x))v = −c2(vT v)−vT L̂(x)v < 0,

for all v 6= 0. Hence, the structural energy Hλ(x, v) is mono-
tonically decreasing for all (x, v) and

Hλ(x(t), v(t)) ≤ H0 := Hλ(x(0), v(0)) <∞.

The finiteness ofH0 = V (x(0))+λJ(x(0))+K(v(0)) follows
from the assumption that the collective potential, the inertia, and

the velocity mismatch are all initially finite. Thus, for all t ≥ 0,
we have

Uλ(x(t)) ≤ H0, K(v(t)) ≤ H0.

But Uλ(x) = V (x) + λ
2x

Tx with λ > 0 and V (x) ≥ 0 for all
x, therefore

xT (t)x(t) ≤ 2H0

λ
, ∀t ≥ 0.

This guarantees the cohesion of the group of α-agents for all
t ≥ 0 because the position of all agents remains in a ball of
radius R =

√
2H0/λ centered at qc. This cohesion property

together with boundedness of velocity mismatch, or K(v(t)) ≤
H0, guarantees boundedness of solutions of the structural dy-
namics Σ2. To see this, let z = col(x, v), then

‖z(t)‖2 = xT (t)x(t)+vT (t)v(t) ≤ 2(
1
λ

+1)H0 =: C(λ) <∞.

Part ii) follows from LaSalle’s invariance principle. Keep in
mind that Ḣλ(x, v) = 0 implies v = 0. Thus, similar to the
argument in the proof of Theorem 1, almost every solution of
the particle system asymptotically converges to an equilibrium
point z∗λ = (x∗λ, 0) where x∗λ is a local minima of the aggregate
potential function Uλ(x).

Part iii) follows from the fact that v asymptotically vanishes.
Thus, the velocities of all agents asymptotically match in the
reference frame.

To prove part iv), supposeH0 < (k+1)c∗ and there are more
than k distinct pairs of agents that collide at a given time t1 ≥ 0.
Hence, there must be at least k + 1 distinct pairs of agents that
collide at time t1. This implies the collective potential of the
particle system at time t = t1 is at least (k+1)ψα(0). However,
we have

H0 = V (x(0))+λJ(x(0))+K(v(0)) ≥ V (x(0) ≥ (k+1)ψα(0).

This contradicts the assumption thatH0 < (k+1)c∗. Hence, no
more than k distinct pairs of agents can possibly collide at any
time t ≥ 0. Finally, with k = 0, no two agents ever collide.

Theorem 2 establishes some critical properties of collective
behavior of a group of agents applying Algorithm 2 includ-
ing cohesion, convergence, asymptotic velocity matching, and
collision-avoidance. But, unless one provides a geometric char-
acterization of local minima of Uλ(q) for relatively small λ > 0,
it is not possible to establish that the limiting conformation x∗λ
is “closely related” to an α-lattice. I would like to pose two con-
jectures that establish this close relationship between geometric
and graph theoretic properties of any local minima of Uλ(q) and
features of flocks:

Conjecture 1. (connectivity) Any local minima q∗λ of Uλ(q) for
λ > 0 induces a connected proximity net.

The implication of Conjecture 1 is that a flock of α-agents is
asymptotically self-assembled. The next conjecture states geo-
metric properties of q∗λ.

Conjecture 2. (quasi α-lattice) Let Uλ(q) = V (q) + λJ(x)
be an aggregate potential function with parameter λ > 0. For
any fixed n, d, r satisfying r/d = 1 + ε (ε � 1), there exists a
λ∗ � 1 so that 1) any local minima q∗λ ofUλ(q) with λ ∈ (0, λ∗)
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is a quasi α-lattice with ratio κ = 1 + ε and 2) q∗λ induces a
planar graph (G(q∗λ), q∗λ) in dimensions m = 1, 2, 3.

Proof/disproof of both conjectures is the subject of ongoing
research. Now, we are ready to present a more enhanced version
of Theorem 2 with both geometric and graph theoretic relations
to flocking.

Theorem 3. Consider a group of α-agents applying protocol
(24) (Algorithm 2) with c1, c2 > 0 and structural dynamics Σ2.
Assume the initial structural energy is finite and the interaction
range satisfies r/d = 1 + ε (ε � 1). If conjectures 1 and 2
hold, then almost every solution of Σ2 asymptotically converges
to an equilibrium point (x∗λ, 0) where x∗λ is a quasi α-lattice and
a flock is asymptotically self-assembled.

Proof: The proof follows from part ii) of Theorem 2 and
Conjectures 1 and 2.

In simulation results of flocking (see Section VIII), the author
observed that during flocking, the proximity structures induced
by the trajectory of α-agents were planar graphs. The following
theorem, analytically establishes this planarity property as well
as a bound on the computational complexity of proximity nets
induced by α-lattices.

Theorem 4. (planarity) Let q be an α-lattice of scale d > 0 and
ratio κ > 1 with n nodes at distinct positions. Then
i) The proximity structure (G(q), q) is a planar graph in dimen-
sions m = 2, 3.
ii) The proximity net G(q) has at most 3n− 6 links in R2.
iii) The proximity net G(q) with n > m+ 1 nodes cannot be a
complete graph in Rm for m = 1, 2, 3.

Proof: See Appendix A in [51].
The importance of planarity of the proximity structure

(G(q), q) in 2-D space is that the total number of interaction
terms for maintaining flocking motion is O(n) (linear in the
number of agents). This is a substantial reduction is computa-
tional complexity due to use of a distributed flocking algorithm
compared to anO(n2) cost of implementation of all-to-all inter-
action topologies in some existing models of swarms.

Remark 3. According to Theorem 4, the planarity of graphs in-
duced by α-lattices imposes a restriction on maximum ratio of
the interaction range r to desired distance d > 0. For example,
a cubic lattice q in dimension m is a valid α-lattice with ratio
κ = 1 + ε if 0 < ε <

√
m. Otherwise, two nodes that are on

opposite sides of the diagonal of a hypercube become neighbors
and this invalidates q as an α-lattice. Since each node can no
longer be equally distanced from all of its neighbors.

VI. ALGORITHM 1 EMBODIES REYNOLDS RULES

In this section, we demonstrate that Algorithm 1embodies ex-
tended forms of all three rules of Reynolds [5] in a single equa-
tion. The main ambiguity of Reynolds rules is that it is unclear
when and how each rule applies since none of the rules are math-
ematically stated. This issue is resolved during our attempt to
extract Reynolds rules formally from Algorithm 1.

The key tool in our analysis are stress elements of a graph
[44]. Let us define the stress elements associated with edge (i, j)

of the proximity net G(q) as

sij(q) =
φα(‖qj − qi‖σ)
1 + ε‖qj − qi‖σ

, (i, j) ∈ E(q). (43)

The stress elements between non-neighboring agents are defined
to be zero. The (α, α) flocking protocol can be expressed in
terms of stress and adjacency elements as follows:

uα
i =

∑
j∈Ni(q)

sij(q)(qj−qi)+
∑

j∈Ni(q)

aij(q)(pj−pi) = ug
i +ud

i .

From the above equation, all three rules of Reynolds follow. The
second term represents the velocity matching rule (or rule 3) and
the first term embodies both the flock centering and separation
rules (rules 1 & 2).

To demonstrate this fact, let us define Si(q) =
∑

j∈Ni
sij(q).

We have

ug
i =

∑
j∈Ni

sij(q)(qj − qi) = Si(q)(qi − 〈qi〉) (44)

where 〈qi〉 is the weighted average of the position of the neigh-
bors of agent i, i.e. 〈qi〉 = (

∑
j∈Ni

sij(q)qj)/(
∑

j∈Ni
sij(q)).

Hence, each agent obeys the following rules: a) if Si(q) > 0,
move towards the weighted center of the neighbors and b) if
Si(q) < 0 move away from the weighted center of the neigh-
bors. This together with velocity consensus term completes the
proof of the claim that all three rules of Reynolds follow from
Algorithm 1. Therefore, Reynolds rules are insufficient for cre-
ation of flocking behavior. Further details can be found in [51].

VII. FLOCKING WITH OBSTACLE AVOIDANCE

In this section, we present a distributed flocking algorithm
with multiple obstacle-avoidance capability. The main idea is to
use agent-based representation of all nearby (active) obstacles
by creating a new species of agents called β-agents. A β-agent
is a kinematic agent that is induced by an α-agent whenever the
α-agent is in close proximity of an obstacle. In the following,
we formally define the notion of a β-agent and specify the inter-
action protocol between an α-agent and a β-agent.

We restrict our study to obstacles that are connected con-
vex regions in Rm with boundaries that are smooth manifolds.
Specifically, we focus on obstacles that are either spheres or in-
finite walls as shown in Fig. 5. Our approach to obstacle avoid-
ance can be summarized in the following steps:
1) Determine the indices Nβ

i (to be defined) of the set of obsta-
cles Ok that are neighbors of α-agent i.
2) Create a (virtual) kinematic β-agent at q̂i,k on the boundary
of a neighboring obstacle Ok by projection where q̂i,k satisfies

q̂i,k = argminx∈Ok
‖x− qi‖ (45)

and Ok is either a closed ball or a closed half space on one side
of a hyperplane.
3) Add a term ψβ(‖q̂i,k − qi‖σ) to the potential function of a
group of α-agents corresponding to each β-agent at q̂i,k (ψβ(z)
to be defined).

This approach is partially motivated by the work of Khatib
[38] and Helbing et al. [10]. Fig. 5 schematically illustrates
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Fig. 5. Agent-based representation of obstacles: (a) a wall and (b) a spherical obstacle.

the position of a β-agent induced by an α-agent in proximity of
two types of obstacles. It is not difficult to imagine that notions
such as proximity nets, proximity structures, and α-lattices can
be generalized to their similar counterparts in presence of obsta-
cles.

A. β-Neighbors of α-Agents: (α, β) Proximity Nets

Let Vα = {1, 2, . . . , n} and Vβ = {1′, 2′, . . . , l′} denote the
set of indices of α-agents and obstacles (or β-agents), respec-
tively. Notice that the prime in elements of Vβ is used to guar-
antee that Vα ∩ Vβ = ∅.

An α-agent is called a neighbor of an obstacleOk (k ∈ Vβ) if
and only if the ball Br′(qi) and Ok overlap (as shown in Fig. 5).
This form of neighborhood between an α-agent and an obstacle
is a mutual property. Moreover, an α-agent could possibly have
multiple neighboring obstacles. Particularly, this occurs when a
group of agents intend to pass through a narrow pathway.

We define the set of α-neighbors and β-neighbors of an α-
agent i ∈ Vα as follows:

Nα
i = {j ∈ Vα : ‖qj − qi‖ < r} (46)

Nβ
i = {k ∈ Vβ : ‖q̂i,k − qi‖ < r′} (47)

where r, r′ > 0 are interaction ranges of an α-agent with neigh-
boring α-agents and β-agents, respectively. Here, we choose
r′ < r, but in general, r and r′ can be chosen independently.

The sets of α- and β-neighbors of an α-agent i ∈ Vα naturally
define an (α, β) proximity net that is a spatially induced graph
in the form

Gα,β(q) = Gα(q) +Gβ(q) (48)

where Gα(q) = (Vα, Eα(q)) is a proximity net of all α-agents
and Gβ(q) = (Vβ , Eβ(q)) is a directed bipartite graph induced
by q and the set of obstaclesO = {O‖ : ‖ ∈ Vβ}where Eβ(q) ⊆
Vα×Vβ . The condition Vα∩Vβ = ∅ guarantees well-posedness

of the definition of the bipartite graph Gβ(q). More explicitly,
we have

Eα(q) = {(i, j) : i ∈ Vα, j ∈ Nα
i },

Eβ(q) = {(i, k) : i ∈ Vα, k ∈ Nβ
i },

(49)

and Gα,β(q) = (Vα ∪ Vβ , Eα(q) ∪ Eβ(q)). Similarly, an (α, β)
proximity structure is a triplet (Gα,β(q), q, q̂) where q̂ denotes
the configuration of all β-agents. Keep in mind that there are no
edges between two β-agents.

The new set of inter-agent and agent-to-obstacle algebraic
constraints for an α-agent can be specified as follows:{

‖qj − qi‖ = d, ∀j ∈ Nα
i

‖q̂i,k − qi‖ = d′, ∀k ∈ Nβ
i

(50)

A constrained α-lattice denoted by (q,O) consists of an α-
lattice q and a set of obstacles O that satisfy the set of con-
straints in (50). The relevant ratios of a constrained α-lattice are
κ = r/d and κ′ = d′/d = r′/r (we assume κ′ = κ).

B. Multi-Species Collective Potentials

To achieve flocking in presence of obstacles, we use the fol-
lowing multi-species collective potential function for the particle
system:

V (q) = cα1Vα(q) + cβ1Vβ(q) + cγ1Vγ(q) (51)

where the cα1 , c
β
1 , c

γ
1 are positive constants and (α, α), (α, β),

(α, γ) interaction potentials are defined as follows

Vα(q) =
∑
i∈Vα

∑
j∈Vα\{i}

ψα(‖qj − qi‖σ), (52)

Vβ(q) =
∑
i∈Vα

∑
k∈Nβ

i

ψβ(‖q̂i,k − qi‖σ), (53)

Vγ(q) =
∑
i∈Vα

(
√

1 + ‖qi − qr‖2 − 1). (54)
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The function Vγ(q) has to do with the navigational objective of
a group of α-agents. The heterogeneous adjacency between an
α-agent at qi and its neighboring β-agent at q̂i,k is defined as

bi,k(q) = ρh(‖q̂i,k − qi‖σ/dβ), (55)

where dβ < rβ with dβ = ‖d′‖σ, rβ = ‖r′‖σ . Define the
repulsive action function

φβ(z) = ρh(z/dβ)(σ1(z − dβ)− 1) (56)

with σ1(z) = z/
√

1 + z2. Notice that φβ(z) vanishes smoothly
to zero at z = dβ and remains zero for all z ≥ dβ . This naturally
defines a repulsive pairwise potential ψβ(z) in the form

ψβ(z) =
∫ z

dβ

φβ(s)ds ≥ 0. (57)

Since vehicles/robots/animals in real-life cannot apply un-
bounded forces, we avoid the use of functions with unbounded
derivatives such as 1/z or log(z). Clearly, −2 < ψ′β(z) ≤ 0
for all z ∈ R, and thereby the derivative of ψβ(z) is uniformly
bounded.

C. Flocking with Obstacle Avoidance

We are ready to present our main flocking algorithm with the
capability to perform obstacle avoidance:

Algorithm 3: This algorithm consists of three terms:

ui = uα
i + uβ

i + uγ
i (58)

where uα
i denotes the (α, α) interaction terms, uβ

i denotes the
(α, β) interaction terms, and uγ

i is a distributed navigational
feedback. Each term in equation (58) is explicitly specified as
follows:

uα
i = cα1

∑
j∈Nα

i

φα(‖qj − qi‖σ)ni,j

+ cα2
∑

j∈Nα
i

aij(q)(pj − pi)

uβ
i = cβ1

∑
k∈Nβ

i

φβ(‖q̂i,k − qi‖σ)n̂i,k (59)

+ cβ2
∑

j∈Nβ
i

bi,k(q)(p̂i,k − pi)

uγ
i = −cγ1σ1(qi − qr)− cγ2(pi − pr)

where σ1(z) = z/
√

1 + ‖z‖2 and cνη are positive constants for
all η = 1, 2 and ν = α, β, γ. The pair (qr, pr) is the state of a
static/dynamic γ-agent. The vectors ni,j and n̂i,k are given by

nij =
qj − qi√

1 + ε‖qj − qi‖2
, n̂i,k =

q̂i,k − qi√
1 + ε‖q̂i,k − qi‖2

.

The only missing piece of the puzzle is the method of calculation
of position and velocity of β-agents that is discussed next.

In terms of sensing requirements, we assume that every α-
agent is equipped with range sensors that allow the agent to
measure the relative position between the closest point on an
obstacle and itself. Both radars and laser radars (or ladars) can
be used as range sensors.

D. Calculation of Position and Velocity of β-Agents

Given an obstacle Ok and its neighboring α-agent with state
(qi, pi), the position and velocity of a β-agent on a wall or a
sphere is given by the following lemma:

Lemma 4. Let q̂i,k, p̂i,k with (i, k) ∈ Vα × Vβ denote the po-
sition and velocity of a β-agent generated by an α-agent with
state (qi, pi) on an obstacle Ok. Then
i) For an obstacle with a hyperplane boundary that has a unit
normal ak and passes through the point yk, the position and
velocity of the β-agent are determined by

q̂i,k = Pqi + (I − P )yk, p̂i,k = Ppi

where P = I − akaT
k is a projection matrix.

ii) For a spherical obstacle with radius Rk centered at yk, the
position and velocity of the β-agent are given by

q̂i,k = µqi + (1− µ)yk, p̂i,k = µPpi

where µ = Rk/‖qi − yk‖, ak = (qi − yk)/‖qi − yk‖, and
P = I − akaT

k .

Proof: See the proof of Lemma 3 in [51].
The following lemma demonstrates that the second term in

uβ
i is in fact a valid damping force. This fact is used later to

establish that the overall particle system is dissipative.

Lemma 5. The force f̂d between α-agents and β-agents with
elements f̂d

i =
∑

k∈Nβ
i
bi,k(pi − p̂i,k) is a valid damping force,

i.e. let Kr = 1
2

∑
i ‖pi‖2 and suppose ṗi = f̂d

i , then K̇r ≤ 0.

Proof: See the proof of Lemma 4 in [51].

E. Analysis of Flocking with Obstacle Avoidance

A natural question is whether the particle system obtained by
applying Algorithm 3 is dissipative. The answer in this case is
not as predictable as the case of interactions among α-agents.
The reason is that in free-flocking, every α-agent reciprocates
the action of its neighboring α-agents, but in constrained flock-
ing the (α, β) proximity net is a directed graph.

Theorem 5. Consider a particle system applying Algorithm 3
(or protocol (58)). Assume that the γ-agent is a static agent
with a fixed state (qr, pr) = (qd, pd). Define the energy func-
tion H(q, p) = V (q) + T (q, p) with kinetic energy T (q, p) =
1
2

∑n
i=1 ‖pi‖2. Suppose there exists a finite time t0 ≥ 0 such

that the average velocity of all agents satisfies the condition

n

2
〈pc(t), pd〉 ≤ T (q(t), p(t)), ∀t ≥ t0. (60)

Then, the energy of the system is monotonically decreasing (i.e.
Ḣ(q(t), p(t)) ≤ 0) along the trajectory of the collective dynam-
ics of the multi-species system for all t ≥ t0.

Proof: See the proof of Theorem 6 in [51].
The interpretation of condition (60) for a group of particles

with equal velocities is interesting. In this case, pc = pi for all
i, and therefore (60) reduces to the inequality pT

c pd ≤ ‖pc‖2.
Let θc,d denote the misalignment angle between vectors pc and
pd in Rm, i.e. cos(θc,d) = 〈pc · pd〉/(‖pc‖ · ‖pd‖). Suppose
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Fig. 6. The in-agent and intra-agent information flow in constrained flocking:
(a) a virtual-leader/follower hierarchical architecture and (b) a peer-to-peer ar-
chitecture.

pc, pd 6= 0, then the group has to be sufficiently agile, or ‖pc‖ ≥
v0 := ‖pd‖ cos(θc,d). Intuitively, this can be interpreted as a
collective effort by the group to keep up with the desired velocity
pd. For a γ-agent with pd = 0, condition (60) trivially holds.

Analysis of an equilibrium state of a group of dynamic agents
that perform flocking in presence of obstacles makes less sense
when the flock does not pass around all the obstacles. To be
more precise, it is less interesting to analyze the stability of
the equilibrium of collective dynamics of a flock while some
β-agents are permanently present. This is certainly not the case
for problems such as sensor placement and distributed sensing
[15]. On the other hand, if one assumes that after some finite
time t1 > 0, no α-agent ever comes near an obstacle, the case
reduces to analysis of free-flocking that has already been pre-
sented. Hence, we postpone a comprehensive analysis of the
behavior of flocks in permanent presence of obstacles for mo-
bile sensor networks to a future occasion.

F. Flocking using a Peer-to-Peer Network

The information flow in flocking with obstacle avoidance has
a natural hierarchical architecture as shown in Fig. 6 (a). A γ-
agent has the role of a virtual-leader (or commander) in charge
of navigation and control of the behavior of a flock as a whole.
As a result, the hierarchy in Fig. 6 (a) can be referred to as a
virtual-leader/follower architecture. The dashed line between
the γ-agent and all α-agents indicates a single information ex-
change at t = 0 (otherwise, the algorithm becomes centralized).
Note that a virtual-leader/follower architecture should not be
confused with a leader/follower architecture in which the leader
is one of the physical agents (e.g. a vehicle in a multi-vehicle
system or a fish in a school).

Since the computation required for implementation of virtual
agents has to be carried out by embedded computers of a phys-
ical agent, Fig. 6 (a) does not provide a realistic picture of the
computational architecture necessary for implementation of Al-
gorithm 3. Though, the hierarchical architecture is useful in un-

derstanding why a γ-agent plays the role of a unifying objective
that brings all the α-agents together and assembles a connected
network of mobile agents.

To model the information flow of Algorithm 3, we create one
γ-agent corresponding to each α-agent as shown in Fig. 6 (b).
The new architecture is a peer-to-peer network that represents
the interactions of a group of macro-agents (see Fig. 6 (b)). Each
macro-agent consists of an α-agent and its corresponding γ- and
β-agents as illustrated in Fig. 6 (b). This figure demonstrates
that Algorithms 1 & 2 are special cases of Algorithm 3 and can
be implemented using a peer-to-peer network.

In this network of macro-agents, two macro-agents only com-
municate the state of their public components (i.e. α-agents).
Under the assumption that the initial state and dynamics of all γ-
agents are equal, the virtual-leader/follower and peer-to-peer ar-
chitectures become equivalent representations of a multi-species
particle system.

The biological implication of feasibility of performing track-
ing/migration for groups of dynamic agents using a peer-to-peer
network is that “flocks need no leaders”. This mathematically
confirms a fact that has been known to animal behavior scientists
for years [1].

VIII. SIMULATION RESULTS

In this section, we present several simulation results of 2-
D and 3-D flocking. The following parameters remain fixed
throughout all simulations: d = 7, r = 1.2d (or κ = 1.2),
d′ = 0.6d, r′ = 1.2d′, ε = 0.1 (for σ-norm), a = b = 5 for
φ(z), h = 0.2 for the bump function of φα(z), h = 0.9 for
the bump function of φβ(z), and the step-size in all simulations
ranges between 0.01 to 0.03 seconds (equivalent to an update
frequency of 33 Hz to 100 Hz). The parameters of the flocking
algorithms and the types of the initial states are specified sepa-
rately for each experiment. The set of l spherical obstacles are
specified with an (m+ 1)× l matrix Ms where each column of
Ms is the vector col(yk, Rk) ∈ Rm+1.

In all simulation results, the heading angle (or attitude) of
each α-agent specifies the direction of the velocity of that agent.
In addition, the position of a dynamic γ-agent is marked with a
× sign.

A. 2-D Flocking in Free-Space (n = 150)

Fig. 7 shows consecutive snapshots of the proximity structure
during 2-D flocking for 150 agents in free-space using Algo-
rithm 2. The initial positions are chosen randomly from a Gaus-
sian distribution with variance of 2500. The initial velocity coor-
dinates are uniformly chosen at random from the box [−2,−1]2.
A flock is formed in Fig. 7 (d) and maintained thereafter. A dy-
namic γ-agent is used for this example. The number of edges of
the proximity net G(q(t)) increases by time and has a tendency
to render the network connected. The set of initial positions
are chosen uniformly at random so that the initial proximity net
G(q(0)) is highly disconnected (i.e. has too many components).
This makes the task of flocking more challenging. The planarity
of the proximity structures in Figs. 7 (c) through (f) is very clear.
Numerical measurements indicate that the final conformation is
a low-energy quasi α-lattice that induces a connected proximity
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Fig. 7. 2-D flocking for n = 100 agents applying Algorithm 2.

net (see Fig. 12 (a)). These observations are in close agreement
with our theoretical predictions in Section V.

B. 2-D Fragmentation in Free-Space (n = 40)

Fig. 8 demonstrates the fragmentation phenomenon for n =
40 agents applying Algorithm 1. It is not surprising that with
a random set of initial states, flocking behavior is not created.
In Fig. 8 (f), one can identify 9 distinct small components of
the proximity net (each contains at list two agents) and three

individual agents.

In Algorithm 1 (or (α, α) protocol), no γ-agent exists due to
lack of existence of a group objective. This simulation result is
another evidence that demonstrates creation of flocking motion
is rather nontrivial because the idea of using a gradient-based
control law plus a velocity matching term does not necessarily
work!

Fragmentation is a generic form of collective behavior of
agents applying Algorithm 1. This behavior is insensitive to
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Fig. 8. Fragmentation for 40 agents applying Algorithm 1.

the type of probability distribution of the initial position of the
agents. Apparently, for the case of a highly dense initial prox-
imity net with small initial velocity mismatch, one might expect
that the group of agents form a quasi-flock.

In Figs. 8 (d) through (f), it can be observed that two agents
which belong to two different components of the proximity net,
move further apart from each other as time goes by. Again,
this is a generic property of fragmentation. Fragmentation phe-
nomenon can be viewed as lack of cohesion in a group of parti-
cles (see Fig. 12 (b)).

C. 3-D Flocking in Free-Space: Automated Rendezvous

Fig. 9 shows the consecutive snapshots of 3-D flocking for a
group of n = 50 agents using Algorithm 2. Each agent rep-
resents a UAV moving in R3. The initial state of the agents
is chosen at random with a Gaussian distributed. The attitude
of each UAV is a rotation matrix Ri ∈ SO(3) with columns
r1, r2, r3. We use the following steps to determine Ri from ve-
locity pi 6= 0: i) set r1 = pi/‖pi‖ and let e3 = (0, 0, 1)T , ii)
set r2 = e3 × r1, and iii) set r3 = r1 × r2 (× denotes the
cross-product in R3). For pi = 0, define Ri = I3. Based on
this experiment, flocking can be used as a means of automated
rendezvous (or gathering) for a medium to large number of au-
tonomous agents. It is apparent that after some finite time, the

agents self-assemble a flock and maintain its connectivity there-
after. The formal proof of this statement requires the proof of
Conjecture 1 in Section V.

D. Split/Rejoin Maneuver: Low-Altitude Flight of UAVs and
Predator Evasion

Consider a group of agents that intend to move/migrate from
point A to B. Here, A and B are the positions of the center
of mass (CM) of the group at the group’s source and destina-
tion. Whenever there are multiple obstacles along the straight
line connecting A to B, the agents cannot pass through the ob-
stacles. As a result, they might split in two or multiple smaller
groups. This maneuver is useful for missions that require low-
altitude flight of UAVs or moving in urban environments. In
schools of fish, the split/rejoin maneuver is used as a predator
evasion tactic [3].

The objective in performing a split/rejoin maneuver is to
gather various groups that have initially split due to the presence
of obstacles or adversarial agents. The split/rejoin maneuver is
demonstrated in Fig. 10 for a group of n = 150 agents in pres-
ence of l = 6 obstacles. Based on Fig. 10, it is clear that the
proximity net of dynamic agents during flocking undergoes fre-
quent changes. In other words, flocking involves stability anal-
ysis for a network of dynamic systems with switching topology
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(a) (b)

(c) (d)
Fig. 9. Snapshots of 3-D flocking/automated rendezvous using Algorithm 2 for n = 50 UAVs.

(e. g. [21]).

The initial position of the agents are chosen uniformly at ran-
dom from the box [−40, 80]2. The initial velocities are set to
zero. The group objective is specified by a static γ-agent with
qd = (200, 30)T and pd = (5, 0)T . Moreover, cα1 < cγ1 < cβ1
and cν2 = 2

√
cν1 for all species. The matrix of obstacles is

Ms =

 100 110 120 130 150 160
20 60 40 −20 40 0
10 4 2 5 5 3

 .

Based on Fig. 10, after all agents pass the obstacles on their
way, the group forms a large flock. It was numerically verified
that no agent ever entered any of the six obstacles for the com-
plete trajectory of the particles.

E. Squeezing Maneuver: Moving through Narrow Spaces

The squeezing maneuver is the result of flocking in presence
of obstacles that are relatively close to each other. This a special
case of escape panic phenomenon. By “relatively close”, we
mean that the narrow pathway between the obstacles is about 2r
to 3r wide. Fig. 11 illustrates the task of squeezing maneuver for
n = 150 agents. The initial positions of the agents are n = 150
random points that are uniformly distributed in the box [0, 120]2.
The initial velocity of all agents is set to zero. For this case,
the group objective is specified by a static γ-agent with qd =
(230, 60)T and pd = (6, 0)T . In addition, cα1 < cγ1 < cβ1 and
cν2 = 2

√
cν1 for ν = α, β, γ. The matrix of obstacles is given by

Ms =

 150 150
30 100
25 25
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Fig. 10. The split/rejoin maneuver for n = 150 agents.

According to Fig. 11, one can observe that the agents avoid col-
lision with both obstacles as moving forward. This has been nu-
merically verified for the entire trajectory of the particles. Since
the desired group velocity is non-zero, the group does not stop
near qd and moves along the specified desired group velocity
pd. After passing both obstacles, the agents form a large flock
as shown in Fig. 11 (f).

IX. WHAT CONSTITUTES FLOCKING?

In [52], Partridge provides a brief survey of various defini-
tions of “schooling in fish” by animal behavior scientists that
spans half a century from 1927 to 1981. The length of this pe-
riod is a clear indication of the difficulty of the task in hand. To
give an objective definition of flocking, we determine a quanti-
tative measure of flocking that is independent of collective dy-
namics of the agents. In the sense that it does not depend on a
specific method used for generation of trajectories of particles,
i.e. the measure is universal. In the following, we define a spe-
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Fig. 11. The squeezing maneuver for n = 150 agents.

cial form of flocking called α-flocking:

Definition 4. (α-flocking) Let z : t 7→ col(q(t), p(t)) be the
state trajectory of a system of n dynamic agents (or particles).
We say a group of agents perform α-flocking over the time inter-
val [t0, tf ] if there exists relatively small numbers ε0, ε1, ε2 > 0
and a distance d > 0 such that the trajectory z(t) satisfies all the
following conditions for all t ∈ [t0, tf ] with an interaction range
r = (1 + ε0)d:
i) The group remains a quasi-flock.
ii) The group remains cohesive.

iii) The deviation energy remains small (E(q(t)) ≤ ε1d
2).

iv) The velocity mismatch remains small (K(v(t)) ≤ ε2n).
A more strict form of flocking, or strict α-flocking, can be de-
fined by replacing the above four conditions with the following
three properties:
a) The group remains a flock (i.e. the proximity net G(q(t))
remains connected).
b) The deviation energy remains small (E(q(t)) ≤ ε1d

2).
c) The velocity mismatch remains small (K(v(t)) ≤ ε2n).

One can use conditions a) and b) to establish that the group
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Fig. 12. The C,R, Ẽ, K̃ curves (in clock-wise order): (a) flocking and (b) regular fragmentation.

remains cohesive over the interval [t0, tf ]. Definition 4 has the
same role for flocking in particle systems that Lyapunov stability
has for nonlinear dynamical systems. It is worthwhile mention-
ing that “regular fragmentation” violates conditions i), ii), and
iv) of Definition 4, “irregular fragmentation” violates all four
conditions of α-flocking, and “irregular collapse” severely vi-
olates condition iii). Therefore, irregular/regular fragmentation
and irregular collapse do not constitute α-flocking as mentioned
in Section I. Furthermore, “regular collapse” is an acceptable
form of α-flocking for when a comfortable/safe inter-agent dis-
tance d is replaced by an uncomfortable distance d′ � d. Sur-
prisingly, regular collapse phenomenon can be found in nature
as a defense mechanism used by schools of fish. Recent results
on collapse phenomenon for self-driven particle systems can be
found in D’Orsogna et al. [53].

Formation flight (e.g. for birds) can be viewed as the most
strict form of α-flocking with ε1 = ε2 = 0 and a fixed topology
G(q(t)) = G(t0),∀t ∈ [t0, tf ]. This is consistent with the pre-
diction of Theorem 2 (part ii)) that asymptotically the topology
of a flock of α-agents evolves to a fixed graph G∗ = G(x∗λ).

The main feature of Definition 4 is that α-flocking can be
numerically verified for the trajectories of a system of parti-
cles regardless of the method of trajectory generation. Mean-
ing that the definition of α-flocking is universal (or algorithm-
independent). This is analogous to universality of the definition
of “Lyapunov stability” for nonlinear systems (Lyapunov sta-
bility is a property of the solutions of a nonlinear system and
not its vector field). The challenge is to search for parameters
ε0, ε1, ε2, d. This verification process is discussed next.

A. Verification of α-Flocking

To verify whether a group of particles perform α-flocking,
we need to calculate four quantities along the trajectory of the
particles. These quantities are defined in the following:
i) Relative Connectivity: Since the rank of Laplacian of a
connected graph of order n is at most (n − 1), we define
the relative connectivity of the group at time t as C(t) =

1
n−1 rank(L(q(t))) ∈ [0, 1], where L(q) is the adjacency matrix
of a graph with 0-1 adjacency elements corresponding to the set
of edges of the proximity net G(q).

ii) Cohesion Radius: We define the cohesion radius of a group
of agents at time t as R(t) = maxi∈V ‖qi(t) − qc(t)‖. A cohe-
sive group has a finite cohesion radius.
iii) Normalized Deviation Energy: Ẽ(q) = E(q)/d2.
iv) Normalized Velocity Mismatch: K̃(v) = K(v)/n.

To clarify the use of these quantities, consider the trajectory of
n = 150 particles applying Algorithm 2. The curvesC,R, Ẽ, K̃
for this trajectory are plotted in Fig. 12 (a) over the first 200 it-
erations. (The step-size is T = 0.03 (sec) and t = kT where k
is the iteration number.) At iteration kc > 100, a phase transi-
tion occurs and the proximity net G(q(t)) becomes connected.
Clearly, the network topology remains connected for all future
iterations k > kc. The point k = kc is shown by a dished
line. The effect of this phase transition is clear in the (normal-
ized) velocity mismatch curve for k > kc. In this case, the
cohesion radius is monotonically decreasing. It is also clear that
the (normalized) energy deviation remains relatively small after
k = 150 iterations. Based on the simulation data, we conclude
that α-flocking is achieved after the 150th iteration with param-
eters ε0 = 0.2, ε1 = 0.005, ε2 = 0.3.

In contrast, Fig. 12 (b) shows the four curves obtained from
the trajectory of particles during fragmentation for n = 50
agents. Here are some observations: 1) the cohesion radius is
monotonically increasing after a brief period, 2) the proximity
net never becomes connected and has too many components, 3)
the velocity mismatch never reduces below a large constant and
is increasing after a brief period, and 4) the deviation energy re-
mains relatively low. All these facts point out to the occurrence
of regular fragmentation phenomenon.

X. CONCLUSIONS

This paper provides a theoretical framework for design and
analysis of distributed flocking algorithms for multi-agent net-
worked systems. The cases of free-flocking and flocking with
obstacle avoidance were both addressed. α-lattices as geomet-
ric models of flocks play a crucial role in both construction of
collective potential functions for flocking as well as analysis of
flocking behavior.

Three distributed flocking algorithms were introduced that
lead to self-organizing flocking behavior. We demonstrated that
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Algorithm 1 is responsible for creation of spatial-order in flocks.
This algorithm generically leads to regular fragmentation and
embodies all three rules of Reynolds in a single equation. Al-
gorithms 2 and 3 both evolved from Algorithm 1 by adding
appropriate terms that account for group objective and obsta-
cle avoidance, respectively. We demonstrated that generically
Algorithm 2 leads to flocking, whereas Algorithm 1 leads to
fragmentation. The concepts of “flocks” and “flocking” were
formally defined and numerically verified. Both split/rejoin ma-
neuver and squeezing maneuver were successfully performed
using Algorithm 3 for 150 agents.
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